Molybdenum Spun Crucibles for LED Sapphire Crystal Growing
The sapphire crystal growing industry has seen a significant increase in the fabrication of crucibles for growing sapphire crystals used in the manufacture of LEDs. These crucibles have distinctive designs for melting alumina in a precise and highly controlled crystal growth environment.

Spun crucibles produced from molybdenum possess excellent thermal properties required to withstand the critical environment for growing sapphire crystals. Molybdenum is characterized by its high melting temperature, creep resistance, low thermal expansion coefficient (CTE), excellent thermal conductivity, which combined with low CTE, makes the entire crystal growing system very stable. In addition, molybdenum and other refractory metals do not contaminate the alumina melt resulting in a higher quality sapphire.

Molybdenum and Molybdenum/Tungsten Crucibles – Powder Metallurgy

> Pure Molybdenum (99.95 % minimum)
> MoW Blend (percentages vary depending on customer requirements)

<table>
<thead>
<tr>
<th>Dimensions</th>
<th>Minimum mm</th>
<th>Maximum mm</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Thickness</td>
<td>2</td>
<td>8</td>
<td>Input thickness requirement is driven by overall crucible height and the amount of stretching done. In general, consider 2 mm for shorter narrower crucibles and 8 mm for longer wide crucibles. For non-consumable parts, thicker material can also add to the expected lifetime.</td>
</tr>
<tr>
<td>Outer Diameter</td>
<td>100</td>
<td>600</td>
<td>< 100 mm request a quote</td>
</tr>
<tr>
<td>Length of Finished Part</td>
<td>No limit</td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>Input Size</td>
<td>-</td>
<td>1500</td>
<td></td>
</tr>
</tbody>
</table>

For requirements outside the above ranges, please request a quote from H.C. Starck.

With the addition of molybdenum spin forming, H.C. Starck has become a vertically integrated company with the capability to refine molybdenum powder, press and sinter ingots, roll input material for spinning, spinning to form, trim, and clean molybdenum and molybdenum alloy crucibles. H.C. Starck can manufacture a wide-range of diameter, height and thickness crucible sizes to suit our customers' needs.
Spin Forming Crucibles

The core component of H.C. Starck’s crucible is our pure molybdenum plate, which is input into the spinning process. Beyond the input material, the spinning procedure is performed the same way it would be on steel, but the material is heated during the spinning process to improve formability. H.C. Starck has developed a unique process to repeatedly make defect-free crucibles with little down time in the crucible production process.

Spinning can be used for other materials like molybdenum alloys and tungsten. These materials also need to be heated to become more ductile and improve formability.

Spin forming is ideal for large diameter, tall, thin-walled crucibles, because the material yield is high, wall thickness can be precision-controlled. The cycle time to spin a thin-walled crucible is very short and well-suited for high volume production. Although, there are other methods to make crucibles, spin forming remains the most economical.

H.C. Starck produces crucibles for the Heat Exchanger Method (HEM) using spin forming. During crystal growth via HEM, the temperature required for melting the alumina crackle is held constant and when the thermal stress affecting the crucible is low, thin-wall spun molybdenum crucibles can be used. In other methods such as Kyropoulous, the thermal gradient is quite severe and requires thicker-walled crucibles made from molybdenum, molybdenum alloys or tungsten.

Sapphire crystal boule produced from crystal growing process.

Input material for spinning process.

Molybdenum spun crucible output.
The conditions of your use and application of our products, technical assistance and information (whether verbal, written or by way of production evaluations), including any suggested formulations and recommendations, are beyond our control. Therefore, it is imperative that you test our products, technical assistance and information to determine to your own satisfaction whether they are suitable for your intended uses and applications. Application specific analysis at least must include testing to determine suitability from a technical as well as health, safety, and environmental standpoint. Such testing has not necessarily been done by H.C. Starck. All information is given without warranty or guarantee. It is expressly understood and agreed that the customer assumes and hereby expressly releases H.C. Starck from all liability, in tort, contract or otherwise, incurred in connection with the use of our products, technical assistance and information. Any statement or recommendation not contained herein is unauthorized and shall not bind H.C. Starck. Nothing herein shall be construed as a recommendation to use any product to conflict with patents covering any material or its use. No license is implied or in fact granted under the claims of any patent. Properties of the products referred to herein shall, as a general rule, not be classed as information on the properties of the item for sale. In case of order please refer to issue number of the respective product data sheet. All sales and deliveries are based on the latest issue of the product data sheet and the latest version of our General Conditions of Sale and Delivery.

The values in this publication are typical values and do not constitute a specification.